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1. INTRODUCTION

Let X = (X1,...,Xn)' be a nonsingular multivariate normal random vector which is
standardized so that E(X) = 0 and var(X) = R, where R = (p“.) with p. = 1 for all i, and
let A¢]R" be a permutation-symmetric region. in this paper, we provide an
approximation to P{Xe¢A) which is both easy to compute and accurate over a wide
range of parameter values. In typical applications, A is an orthant {x_c x 2 ¢
i=1,..,n}, & union of orthants {x: gl(xk 2 ¢) = p}, acube {xx g x < c i=1,..,n}, or
a sphere {x: ‘Exkz < cl.

The problem of evaluating P(X¢A) arises in many contexts. In genetic models of
the transmission of traits, this probability is related to an individual's risk of
contracting a disease: see Rice, et al.[24], Henery[8], and Curnowl[2]. in
geostatistics, it is related to the probability of correct classification in indicator
kriging: see Journei[14], and Solow[28]). It is useful in the construction of
simultaneous conficence intervals: see Miller[19], and Uusipaikka[32]. It also
appears in the middie of some time series or regression problems: see especially
Keenan{15], who shows that orthant probabilities are prediction error probabilities
and transition probabilities for certain binary time series, and Keener and
Waldman[ 16], who need to evaluate orthant probabilities (for dimensions as large s
35) for computing the likelihood function for rank-censored data. Our restriction on
the set A may seem quite severe; however, this formulation is already useful in the
applications just mentioned. In fact, the probability content of the positive orthant
has been the subject of many papers: see Martynov[17], and Moran[21]). Also, the
probability content of the sphere gives the distribution of a weighted sum of
independent X2 variates: see Solomon and Stephens[27], and Imhof[10], for other
approaches.

If a multivariate normal probability were required only infrequently, then ordinary
simulation or numerical quadrature would often be adequate. However, in many
applications (see especially [15] and [16]) the computation of such probabilities is

just a small component of a much larger problem. This larger problem typically'.r

involves the estimation of parameters, and uses an iterative algorithm; thus a. ‘m
subroutine which evaluates multivariate probabilities is repeatedly called, and so 0O

speed and accuracy are important considerations. a
'n...,—_J

This probiem is an old one, and various approaches have been proposed; we now

briefly review them. Numerical integration and simulation in high dimensions are ‘L____1

known to be quite slow. Recently, however, Schervish[26] wrote a program for -7 Codes
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computing rectangular probabilities, and tested it for dimensions ngb, and pij = P
Simulation is, of course, slways available in its simplest form, but standard variance
reduction techniques are hard to obtain; 8 notable exception is the recent work of
Moran[21], in which he gave a clever method for estimating the probability of the
positive orthant, and provided 8 control variate for the estimator. Plackett[23] gave
a reduction formula, but it seems practical only for ngb5. The study of probability
inequalities (see Tong[31), and Eston[5])) has provided many interesting insights and
useful results, but the inequalities themselves often yield poor approximations; see
Section 5 below for further discussion. The evaluation of multivariate normal
probabilities is closely related to the determination of volumes of sets on the
surface of the unit ball in R", but this relationship has only occasionally been used:
see for instance the work of Abrahamson[1], and Ruben{25]; there is a recent
revival of geometrical methods in various contexts, as seen in the work of Diaconis
and Efron[4], Johansen and Johnstone[12], and Naiman[22]). Next, expansions such
as the tetrachoric series have been tried in several cases, but difficulties here include
their slow convergence or even divergence over much of the parameter space: see
Harris and Soms[7], and Moran{20]. Finally, sometimes a direct approach is
rewarding. For instance, if P; = P2 0, or if Pi=e8, where “Ke <1, then many
relevant computations reduce to the evaluation of one-dimensional integrals, which
are easy to do: see Steck[29], and Curnow and Dunnett[3].

In this paper, we will exploit the symmetry of A to provide an approximation to
P(X¢A) that is expressible in terms of one-dimensional integrals; such integrals are
easily evaluated by computer. Some of the methods mentioned above come into
play: for example, we will use the case pij = p. about which we will expand a Tavior
series which turns out to be an (integrated) Gram-Charlier series, and we will use
Schervish’'s program for comparison. After establishing our notation in Section 2, we
introduce a simple approximation in Section 3. We compute and study correction’
- terms in Section 4, do two examples in some detail in Section 5, and summarize our
numerical work there. We then conclude with a brief discussion in Section 6.

2. NOTATION AND PRELIMINARIES

Let X = (X,l,...,Xn)’ be a standardized nonsingular multivariate normal random vector
whose distribution is denoted N (0,R); thus E(X) = 0, and var(X) = R = (p".) with p =1
for sll i. The density of X is denoted pn(fzﬂ); the univariate normal distribution is
denoted ¥{x) = P(X,sx) and its density is p(x). Let d = n(n-1)/2, and string out the
correlations into a vector f-(p12.p13,...,/:23,....,02,\....)'e 9. also, let » be the average




of the components of p, and let p = (Pr?’ ¢ RY E, is sn n-byn equicorrelation

a
matrix with parameter a, where <n-1)"' ¢ & < 1. Pn is the set of n-by-n permutation
matrices, an element of which is denoted #; Il is a random matrix which is
independent of X and is uniformly distributed over Pn. The permutation-symmetric
set AcR" satisfies A = #A = {sa: a¢A} for all #¢P. Our main example below
involves the positive orthant Qn = {5: x 2 0; k=1...n} = {x X 2 0}. Uniess stated
otherwise, all summations are over the entire range of the index variable: thus, for

instance, ; is a summation over all of Pn. Finaily, let
(1 hn(f) = P(XeA).

We suppress the dependence of hn on A,

To derive his reduction formula, Plackett[23] proved and used the following identity
for the multivariate normal:

@ B3p) 8 xR = (azlaxiaxj) # (xR).

This identity has been used to establish probability inequalities and monotonicity
results for multivariate normal probabilities (see Tong[31]). We use it repeatedly
below: it simplifies many computations, and is a natural way of deriving the
multivariate Gram-Charlier series in Section 4.

The equicorrelated case is important in our discussion below, so we describe it
now. If Z = (21,...,Zn)' is a Nn(O,I) vector, Zo is & standard normal independent of Z,
e = (1.1 ¢ IR"., and @20, then V = (1-a)1/22 + 4”2209 is a Nn(O,Ea) variate. Upon
conditioning on Zo, we get the single integral

- ta”ze

(3)  PVeA = Sm Pz « &

) ) ¢lt) dt.
00 (1-a)"2

When A is an orthant or a cube, the integrand in (3) is just a product of one-
dimensional normal marginal probabilities, and if A is a sphere, it is a noncentral X2
probability. Thus, for many cases of interest, the right side of (3) is easily
evaluated. The analogous formula for ¢¢0 is more involved, but still tractable: see
Steck[29]). Also, moments of the form

(4) E[V1'1 PO Vn'n I(V(A)]




are needed below, and they can be expressed as a single integral just like (3). The
same argument applies to the case Pij.‘i‘j' with -1 ¢ e < 1 for all i, which is
generated by Vi = (1-ai2)” 2Zi + aizo, i=1,...Nn

3. A SYMMETRY ARGUMENT

Since A = zA for all wePn, PXeA) = PlaXeA) for sll 'an, and P(XeA) = P(MIXcA)
also. Consider MNX; it has exchangeable components and it is a8 scale mixture of
normals with density

(5) y, (xR} = (n!)"; fn()-(;nRﬂ').

Its first two moments are E(IIX) = 0 and var(llX) = (n!)";uﬁv’ = E;. . We get our
simplest approximation by fitting to Y., the normal density pn(x;El-o). which shares the
same first two moments: this,

6 hip) Z h(ph

This approximation has several! appealing properties. First, it is easily evaluated for
many cases by the argument leading to (3). Second, there is the following heuristic
argument. Let Pd be the set of d-by-d permutation matrices, and let Pd‘ be the
subset of it induced by the correlation vectors of {#X: nPn}. The points {ﬂ/_o:
uPd'} are the vertices of 8 reyular polygon centered at Z: Since hn has the same
value at each vertex of this polygon, and since it is a smooth function of P its
value at the center of the polygon should not be far from its value at a vertex.
Third, it comes from the least squares fit of the equicorrelation matrices to R; that
is, it minimizes E(/ﬂij-a)2 over e. And fourth, a Taylor expansion of hn about
f:(a,...,a)' gives

{7) hn(f) = hn(g) + Dhn(g)'(f-g) + remainder,

where D denotes the gradient. Each component of Dhn(c) is, by Plackett's identity
(2),

(8) (alapij) SA yn()_cE‘) dx = 5; (S/GPU) fn()_cE‘) dx
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. S R (a’lax,axj) # GE,) dx = SA (azlax1ax2) # (xE,) dx

The interchange of the order of differentiation and integration in (8} is easily
justified, and the last equation there comes from the symmetry of A. The linear term
in {7) is thus zero if a=p, so that (6) is also a good first order approximation.

Approximation (6) is based on only two moments, so it is not expected to be
accurate for extreme tail probabilities, for example for I"(Xi 2 c; all i) for large c;
see Steck[30]) and lyengar[11] for a treatment of such cases. Aiso, it is clear from
the heuristic argument above that the approximation should improve as E(pij-})z
decreases. Thus, we need higher moments of NIX to provide correction terms, sc we
now turn to the higher order terms of the Taylor expansion (7).

4. CORRECTION TERMS

To write the Taylor expansion of hn(p) about hn(ﬁ), we need additional notation: let
l_( = (k1,2""'kn-1,n) consist of nonnegative integers k“. for ij, and let HE: = k1.2 + .t

k ;letm={m_,..m) wherem =2 k + X2 k , and note that !m! = 2!'k!. Next,
-1.n - 1 n i i< i,j > Ix] - -
let

@  pM=p K2 p | Femt

n-1,n

(100 D*n (p) = BPI3p, 2"1,2. c Py omtn) b (p), for lki = p;

n-1,n
{11) D'“pn(§;R) = (azplax1'“1. . .axn"‘n) ¢ (XR), for im} = 2p.

(12) C(p,E) = pl/ “‘1,2" .k 'n!), for ki = p.

n-1
We then have
(13) hn(f) = zggs,p!)" 'ﬁ'zp C(p.i_d (f - /:o)" D"hn(f) + remainder.

Consider the integrands in (13): on the left side, we have yn(x:R); by changing the
order of differentiation and integration on the right side and by repeatedly using
Plackett's identity (2} there, we get

R) = -1 - 2 m Eo) o .
(14) ¢ (xR 2':49!) ﬁltp Clp.k) (p - p* D fn()_z.E,) remainder
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oo Clp.k) (p - Z»)" Hm(f;E;) fnb:;E;) + remainder,
where Hm(’.f;e,') is the m™ order Hermite polynomial. Thus, the Taylor expansion (13)
yields the Gram-Charlier series expansion of y (x:R) about fn()_cE}): see Johnson and
Kotz[13] and Mihaila[18] for a discussion of the multivariate Gram-Charlier series
and Hermite polynomials. Of course, we could also interpret the integrands of (13)
as the Gram-Charlier expansion of the mixture of normals fn()_cR) about ,n()_cE}-o); we
get a different expansion, but either interpretation gives the same correction terms
for the approximation (6).

For our purposes, the important feature of (13) is that each D"hn(Z) can be expressed
as a one-dimensional integral; this is because of the Hermite polynomials of (14) and
the argument leading to (3) and (4). It is easy to see that the p™ term of (13)
requires (on the order of) pY additions, where d = nin-1/2. Note that no matrix
inversion is necessary to evaluate the correction terms. In the next section, we give
details of one special case to illustrate our use of (13).

The convergence of (13) is a difficult issue in general. One special case that is
tractable is the trivariate positive orthant, 03, for which ha(,o) = 12 - (1/4r)
1

(cos"(pn) +cos Hp_ )+ cos"(pzs)). Here, (13) comes from the expansion of cos”

P

about p. For any fix1e3d P20 or pg 3-203"2, (13) is convergent for all choices of
p leading to that p and yielding a positive definite matrix R. However, when 2 e
(3-2(3”2).0), (13) is not always convergent: take for instance P = (0.45,-0.60,-0.75)'; the
radius of convergence for cos”' about p = -0.30 is 0.70, and P, = 0.45 lies beyond
that. We will rigorously study the convergence of (13) and (14) elsewhere; here, we

depend upon numerical examples to assess the performance our approximation.
5. EXAMPLES

QOur first example deals with the positive orthant On = {)_c - 0}. We give explicit
expressions for the first two terms of the Taylor expansion (13), and describe their
numerical evaluation. The algebra here is straightforward but rather tedious, so we
suggest the use of MACSYMA for other applications. We only do the case g>0 here.

»
The first term of the Taylor expansion is

(15)  hip = Sm $itr A" g1) o,
00




where 7 = p/(1-p). This expression can be accurately evalusted using a Gaussian
quadrature formula and Hill's [9] algorithm for computing ®. For ng5, quadrature is
not necessary; this is because (15) reduces to 1/2, 1/2 - (1/2:)cos"(}), and 1/2 -
(3/4v)cos"(}) for n = 1, 2, and 3, respectively. For n=4, a simple formula is not
available, but Steck[29] provides an accurate approximation; and for n=5, we have

_ 3 0§ .. 5
(16) hs(f) L —4—’ Z-'—COS (P) + -2——h4(£).

We need (15) for n<0 below, so define h_n(ﬁ) = 0 for n=1,2,.., and ho(7>) = 1. We also
need the following restricted moments:

(17 fle;a,,. ..8)=EIV*...ViIiveQ ),
n 1 1 t n

1

where V is a Nn(O,Ea) variate, a2 ...22321 and 1gtgn. Using the argument leading
to (3), we can rewrite the integral in (17) as a one-dimensional integral: for instance,

(18)  f {a;1) = (1-a)'/2 Sw [#(t3) + 13%(18)] ®ta)™" p(t) dt,

~00

1/2

where o6 = {al{1-e)) For smaii values of n, this integral can be evaluated

explicitly; eise, numerical quadrature is required.

Next, the quadratic form in (13) has an expansion whose terms are proportional to

(19) (p”-}))(,okl-ﬁ) SQ (a‘/axiaxjaxkax|) fn()_(:E;,) dx,
n

with i€j and k<l. Such a set {ijk,} has two, three, or four distinct elements. If
there are four, then the integral in (19) is

(20) f.‘O;E,;) Son_4 $_oXE,) ox,

where e = p/(1+4p); the integral here is evaluated in the same way as (15). When
{i.j.k.,1} has three distinct elements, the integral in (19) is

@1 (n-3) $,0E;) AR 1 (8:1),

where




(22) Al = 5 (143572 1 (1+(n-1)p) ((1-pH14270) "2,

and A=pl(1+3pl. For ng6, the expectation f _. in (21) can be evaluated explicitly in
terms of elementary functions; we omit those details. And when {i,j.k.i} has two

distinct elements, the integral in (19) is

(23)  $,00:E) [B(A (f_,(y:2e(n-3)t _,(y:1. 1) + c(;)son_z oo XE ) 0X],

where
(24)  B(p) = (n-201+27) / (1-p) (1s(n-1p)2,
(25) Cp = p /1 (1-p) (1+(n-1)p),

and y=p/(1+2p); the expectations fn_ here can be explicitly evaluated without

2
numerical quadrature if ng5. Thus, we can use the expressions (20),(21), and (23) to
get the first correction term. We omit the next correction term which involves the

third derivatives of hn(/'o).

We now turn to our numerical work. For dimensions n = 3, 4, and 5, we generated
correiation matrices R with p‘j > 0 for all i,j. For each case, we computed the true
probability of the positive orthant using the program of Schervish. We also
computed approximation (6) and corrections from the second and third derivatives of
{12). We then plotted the relative crror of the three approximations against the
“variance in p”: (n)”" E (,oU - P2 these plots are shown in Figs. 1-9.

For n=3, the relative error decreases considerably as we add higher order terms of
{13). Two parts of the scatterplot are clearly separated in Figs. 1 and 3 (and
somewhat less clearly in Fig.2): the upper part corresponds to "extreme” p of the

form (0.0,/:13,0.9), and the lower part corresponds to less extreme P For n = 4, the
relative error of the third-order approximation is often smaller than that of the
second-order one, although the difference between the two is not great; thus, the
range of relative errors shown in Figs. 5 and 6 are the same. For n = 5, this
improvement is somewhat greater. A conclusion from our work is that (for
correlation matrices of this kind) three terms of the series (13) seem to be enough to

give a relative error of less than about seven percent.

-




Next, we turn to the speed of our algorithm. In Table 1, we compare the time
reqQ.ired (T‘) to compute the first three terms of our approximating series with the
\ime required (Tz) to compute the exact probability (demanding three-place accuracy)
using Schervish’s program. All times are given in seconds; they are the average of
five runs on a VAX 750. For all cases cited in Table 1, the relative error of our
approximation was less than 0.03. Notice that Schervish’'s program is much faster
when P is close to Z’ than when it is not. The reduction in the time needed is

especially evident for n = 5 when the correlation matrix is not too close to the
equicorrelated case.

Our second example involves exceedance probabilities. For a fixed constant ¢»0,
let S = EI(XK > c), and let pn'k(f) = P(S_=k). Then

{26) pn(f) = (pn.o(f)" . .,pn'n(f))

is the exceedance distribution which we approximate by pn(_'/_’). Note that the mean of
the exceedance distribution and that of its approximation are the same: E(Sn;f) =
E(Sn;;_'o) = n®(-c). We now study the second moment of the exceedance distribution
and that of its approximation; this study will yield new results about our
approximation of orthant probabilities. The variance is given by var(Sn;,f) = n®(c) -
n?¢(-c)? + EP()(l > C X‘ > ¢}, which depends only on bivariate quadrant probabilities.
We need the following lemma, the proof of which is an esasy application of
Plackett's identity.

LEMMA 1: Let V be a Nz(O.R) variate with p ., = r. Then Flr) = PV, > e, vV, 2 c) is
convex for r in (0,1); for ¢ > 22 . 4, F is convex in (-1,1); and for ¢=0, F is concave
in (-1,0).

This lemma yields the foliowing

PROPOSITION 1: If (i} p 2 O for all i and j. or (i) if ¢ 2 2"2 - 1, then var(s ;p) >
var(S ;p if (i) c=0 and p, S 0 for all i and j, then var(S ;p) < var(S ;pl.

Proof: The function glp) = var(Sn:p) is 8 symmetric function of the components of
p- Under (i) or (ii), g is Schur convex function of p (see Tong(31,p.106]); and under

(iii), g is a Schur concave function of p. Since p majorizes p, the result follows.

Now consider the case of the positive orthant (c=0, and Sn=n) and suppose that P,
> 0 for all i and j; let a = (a,..,a), where ¢ = min {p”} and f = (B....B), where 8 =
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max {p“.l. From the variance inequality in Proposition 1, it is tempting to conjecture
that

(27) pn'n(;_o) 2 pM(Z).

This is indeed true when n=3 (because -cos”'

is convex in (0,1)), and it represents an
improvement over the bounds derived from the result of Slepian: pn.n(;c) < pM(f) <
pn.n(g) {sse Tong[31,p.10 and p.169)). Examples show that inequality (27) is not true
for larger n. However, Figures 10-12 show that the right side of (27) is a much better
approximation to the positive orthant probability than are the Siepian bounds: for the
same correlation matrices studied above, these Figures compare the relative error of
the Slepian bounds with the relative error of our approximation (6); our approximation
was better in every case (except, of course, when the the matrix was already

equicorrelated, in which case all three coincided with the true probability.)

The same method gives similar results for the cube: Tn = F I(:Xk: < ¢h a., *
P(Tn=k). The analogs of Lemma 1 and Proposition 1 come from the behavior of Glr)
= PV, i 2 iV, i g ¢l

6. DISCUSSION

The problem of evaluating multivariate normal probabilities is a difficult one, and it
is likely that there is no panacea; that is, an approximation which is tailored to work
well for one set of parameter values will probably be inadequate for another. Thus,
many methods have been proposed in the literature. Our contribution to this
literature is to show (from our theoretical and numerical work above) that (13)
provides a good approximation to probabilities of permutation-symmetric regions, and
that it is easily evaluated. One drawback of our proposal is that useful error bounds
for our approximation are not yet available; here, we depend upon numerical work to
assess the error. Our methods can also be applied to the problem of evasluation
Ef(X), where f(x} = f(rx) for all “Pn' and also to random variables with other
elliptically contoured distributions.
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Table 1
4
(.2,.2,.2,.2,.2,.2)
(.2,.4,.4,.6,.8,.8)
(.2,.2,.4,.4,.4,.8)
(.2,.2,.2,.2,.2,.2,.2,.2,.2,.2)
(.0,.0,.0,.2,.2,.2,.4,.4,.4,.4)

(-2' 02' 02, 04, 06, -6' 061 06' -60 Oa)

0.81

0.83

0.83

0.91

0.88

0.88

1.51

7.93

8.01

14.60

16.80

44.90
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